
Desktop Integration Management for
Portable, Zero-Install and Virtualized

Applications

Bachelor Thesis
by

Bastian Eicher
at the Department of Computer Science

System Architecture Group
Karlsruhe Institute of Technology

Supervisor: Prof. Dr. Frank Bellosa
Supervising Research Assistant:Dipl.-Inform. Konrad Miller

Created during: April 6th 2011 – August 4th 2011

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

iii

I hereby declare that this thesis is my own original work which I created without
illegitimate help by others, that I have not used any other sources or resources than
the ones indicated and that due acknowledgment is given where reference is made
to the work of others.

Karlsruhe, August 4th 2011

iv

Abstract

Classic installation systems suffer from a number of disadvantages, such as ver-
sion conflicts and a lack of user control. A number of approaches to mitigate
these disadvantages exist, for example portable applications, zero-install systems
and application virtualization. However, these approaches do not provide the same
end-user experience since they lack proper desktop integration.

In this work we determine the improvements necessary to allow a zero-install
system to provide the same level of desktop integration users are accustomed to
from classic installation systems while providing more user control and retaining
a conflict-free environment.

We developed a domain-specific language, extending the application-metadata
language of an existing zero-install system as a proof of concept as well as a
real-world-suitable system. The accompanying tool set is capable of capturing
systems changes made by classic installation systems and automatically generat-
ing desktop integration metadata from them.

v

vi ABSTRACT

Deutsche Zusammenfassung

Klassische Installationssysteme weisen eine Reihe von Nachteilen auf, wie z.B.
Versionskonflikten und einem Mangel an Benutzerkontrolle. Es existieren meh-
rere Ansätze um diesen Problemen entgegen zu wirken, z.B. portable Anwen-
dungen, installationsfreie Systeme (zero-install) und Anwendungsvirtualisierung.
Diese Ansätze bieten jedoch keine gleichwertige Arbeitsumgebung für Endan-
wender, da ihnen die notwendige Desktopintegration fehlt.

Zero-install ist eine Methode zur Softwareverteilung, bei der zur Bereitstellung
von neuen Anwendungen lediglich Dateien kopiert werden und keine Konfigura-
tionsänderungen notwendig sind. Diese Arbeit baut auf einem zero-install System
namens Zero Install auf.

Portable Anwendungen sind ein Sonderfall von zero-install Anwendungen, wel-
che zusätzlich darauf ausgelegt sind, sämtliche zur Laufzeit anfallenden Daten in
ihrem Installationsverzeichnis abzulegen. Auf diese Weise können die Anwendun-
gen auf tragbaren Datenträgern gespeichert und an unterschiedlichen Rechnern
verwendet werden.

Anwendungsvirtualisierung ist eine Methode, um bestehende Anwendungen au-
tomatisiert in portable Anwendungen zu überführen. Hierzu werden Zugriffe auf
das Betriebssystem teilweise in eine virtuelle Umgebung umgeleitet.

Das Ziel dieser Arbeit ist es, die Desktopintegration klassischer Installationssys-
teme zu analysieren und Zero Install dahingehend zu erweitern Endanwendern
eine gleichwertige Benutzeroberfläche beim Starten von Anwendungen, Öffnen
von Dateien usw. zu bietet.

Wir untersuchen schwerpunktmäßig die Möglichkeiten zur Desktopintegration,
die von der Windows Plattform angeboten werden. Hierzu bauen wir primär auf
der offiziellen Dokumentation auf, analysieren aber zusätzlich die Systemände-
rungen, die von Installationssystemen bekannter Anwendungen vorgenommen wer-
den, um sicherzustellen, dass diese Daten für den alltäglichen Einsatz repräsenta-
tiv sind.

vii

viii DEUTSCHE ZUSAMMENFASSUNG

Zero Install beschreibt Softwarekomponenten und Abhängigkeiten zwischen ih-
nen in einem XML Format, dass Feed Format genannt wird. Diese Arbeit zeigt
den Entwurf einer zusätzlichen domänenspezifischen Sprache zur Beschreibung
von Desktopintegration, welche in das Feed Format eingebettet wird, auf.

Um Desktopintegration klassischer Installationssysteme schneller abbilden zu kön-
nen, haben wir ein Tool entwickelt, welches Systemänderungen automatisiert er-
fasst und in der domänenspezifischen Sprache abspeichert.

Den Kern der Implementierung bildet eine Erweiterung des Windows-Ports von
Zero Install. Diese Erweiterung kann in Feeds eingebettete Desktopintegrations-
daten verwenden, um Anwendungen auf Anfrage des Benutzers ins System einzu-
binden. Sämtliche vorgenommenen Änderungen werden aufgezeichnet und kön-
nen somit rückgängig gemacht oder mit anderen Computern synchronisiert wer-
den.

Um sicherzustellen, dass Anwendungen, die über Zero Install gestartet werden,
während ihrer Laufzeit keine ungewollten Änderungen an der Desktopintegration
vornehmen, fangen wir Zugriffe auf die System API ab und passen die Methoden-
parameter bei Bedarf an.

Die Evaluierung der Implementierung hat gezeigt, dass bei alltäglichen Anwen-
dungsfällen keine sichtbaren Unterschiede zwischen der Desktopintegration durch
klassische Installationsprogramme und durch Zero Install vorliegen.

Die aktuelle Version der Implementierung verlangsamt API Aufrufe für die Win-
dows Registrierung erheblich. In der durchschnittlichen Startdauer und Reakti-
onsgeschwindigkeit der getesteten Anwendungen schlägt sich dies jedoch nicht
merklich nieder.

Bei einigen Anwendungen führt das Abfangen der System APIs zu Speicherzu-
griffsverletzungen. Daher ist dieses Feature in seiner derzeitigen Form noch nicht
für den Alltagseinsatz geeignet. Zukünftige Versionen könnten diesem Problem
mit Techniken aus dem Bereich der Anwendungsvirtualisierung begegnen.

Weitere Möglichkeiten für zukünftige Verbesserungen sind Unterstützung für Li-
nux und Mac OS X sowie eine Nutzung der Desktopintegration zur Umleitung von
Anwendungsstarts in virtuelle Maschinen oder auf Terminalserver.

Contents

Abstract v

Deutsche Zusammenfassung vii

Contents ix

1 Introduction 1
1.1 Problem definition . 1
1.2 Objectives . 3
1.3 Methodology . 3
1.4 Contribution . 4

2 Background 5
2.1 Common terms . 5
2.2 Zero Install . 8
2.3 Related work . 11

3 Analysis 13
3.1 Platform documentation . 13
3.2 Installation monitoring . 18
3.3 Definitions . 20
3.4 Capturing . 21

4 Design 23
4.1 Goals . 23
4.2 Domain-specific languages . 24
4.3 Capturing . 26
4.4 Applying desktop integration . 26
4.5 Synchronization . 27

5 Implementation 29

ix

x CONTENTS

5.1 Tools and libraries . 29
5.2 Installation capturing . 30
5.3 Applying desktop integration . 31
5.4 Stubs . 32
5.5 API hooking . 33

6 Evaluation 37
6.1 Methodology . 37
6.2 Use cases . 38
6.3 Benchmarks . 39
6.4 Results . 40
6.5 Discussion . 40

7 Conclusion 45
7.1 Future work . 45

A Screenshots 47

B XML formats 55

C API hooking 59

Acknowledgments 63

Bibliography 65

Chapter 1

Introduction

This chapter gives you an overview of the limitations of current installation sys-
tems and the methods we used to mitigate them.

1.1 Problem definition

Classic installation systems such as Windows installers and Linux package man-
agers (e.g., RPM and DPKG) suffer from a number of disadvantages:

User control Changes made to the desktop environment happen as a side-effect
of installing an application instead of explicitly at the user’s request. This
means that users must rely on application packagers to provide sensible
integration defaults.

Uninstall Windows applications are installed in individual sub-directories of the
Program Files directory. However, it is also common to place shared library
files in the Windows directory and other locations. Therefore, the complete
removal of an installed application depends on the correct behavior of its
uninstall tool, which is not enforced by the operating system.

Linux distributions following the File System Hierarchy standard distribute
applications’ files across various directories. These directories are intended
to group files based on their type (e.g., executable or library) and their share-
ability (e.g., current user, local system or network-wide). However, they do
not provide any means for determining which files belong to which applica-
tion. Therefore, only the package manager can determine which files need

1

2 CHAPTER 1. INTRODUCTION

to be removed when uninstalling an application. A manual cleanup in case
of a damaged package manager database is generally not feasible. [1] [10]

Multiple versions Since Windows applications are installed into separate direc-
tories they are inherently relocatable1. Therefore, multiple versions of an
application can be installed in different directories simultaneously. How-
ever, the desktop integration performed by the last version to be installed
will take precedence over the others.

Linux distributions traditionally place the executables for all installed ap-
plications in the search path2. This means that only a single version of an
application carrying a specific name can be installed at any given time.

Shared libraries Shared libraries are called DLL files (Dynamic-Link Library)
on the Windows platform. When an application requires a specific library
Windows searches for it in a number of locations, retrieving the first file that
matches the name. [2]

Since this method provides no versioning support installing multiple appli-
cations that require different versions of the same library leads to conflicts.
This problem is colloquially referred to as DLL hell. Windows XP intro-
duced a new feature to mitigate this problem called Side-by-side (SxS) as-
semblies. A SxS assembly combines a library and any additional data files
it may require with versioning metadata. Applications can use a so-called
application manifests (usually embedded within the executable) to specify
precisely which version of a library they require. While this prevents DLL
conflicts it requires existing applications and libraries to be updated to use
SxS. [3]

On Linux systems library filenames contain version numbers allowing mul-
tiple version to be installed in parallel. A field in the library files called
soname contains a string identifier denoting compatible versions. This is
used to create symbolic links between different versions of a library that
implement the same interface. [4]

The aforementioned problems can mostly be traced back to a few root causes:

• Installation processes are, at their core, sequential scripts instead of declara-
tive data stores. This limits the amount of control an outside system (i.e., pack-
age manager) can excerpt over the installation details. [11]

1A relocatable application is an application that can be installed to different locations within
the file system without requiring to be recompiled.

2The search path is an environment variable specifying a set of directories the operating system
will search in order to locate an executable file that was specified without an explicit path.

1.2. OBJECTIVES 3

• Installing new components is seen as a modification of system state instead
of a non-invasive addition of a component to a list. Therefore side-effect-
free installations are inherently impossible.

Portable applications, zero-install systems and application virtualization aim to
mitigate these problems. However, these approaches do not provide the same end-
user experience since they lack proper desktop integration (registering as handler
for file types, context menu entries, etc.).

1.2 Objectives

The objective of this work is to analyze integration points used by classic installa-
tion systems and to enhance an existing zero-install system so it can replace them.
The final result should provide an equivalent end-user experience when launching
applications, opening files, etc..

The new system should work with a wide range of unmodified applications (as
released by the original developers). This work will use the following applications
as a guiding sample: Mozilla Firefox as the default browser, Mozilla Thunderbird
as the default mail client, Pidgin as an instant messenger and the OpenOffice.org
office suite.

1.3 Methodology

To determine what constitutes desktop integration in everyday usage, we selected
a number of applications using classic installation systems and observed their in-
stallation and runtime behavior.

We developed a domain-specific language for describing an application’s desktop
integration as well as tools for capturing and reapplying such data. These features
are built upon the existing Zero Install system (see chapter 2.2).

The evaluation compares the end-user experience as well as installation and run-
time performance of applications installed using their normal installation system
with applications accessed via a zero-install system augmented by the aforemen-
tioned tools.

http://www.mozilla.com/firefox/
http://www.mozilla.org/thunderbird/
http://www.pidgin.im/
http://www.openoffice.org/

4 CHAPTER 1. INTRODUCTION

1.4 Contribution

The contribution of this work is an analysis of system modifications performed
during software installations on Windows systems and a zero-install system capa-
ble of reproducing the same effects without suffering from the problems described
in Chapter 1.1.

This makes it possible for users to combine traditional workflows with new op-
tions, such as opening files via double-click before the corresponding application
is even stored on the local disk or switching the version of the default browser on
the fly.

Chapter 2

Background

This chapter defines common terms used in this work and introduces the software
the implementation is based upon. It also presents related work and different
approaches to improving software installation while handling desktop integration.

2.1 Common terms

Zero-install A zero-install application is an application that requires no invasive
modification to the system state in order to be executable. Installation only
consists of copying a directory structure to an arbitrary location. In the
Windows world this kind of installation is known as xcopy1 deployment.

The term is not be confused with Zero Install, which is a tool used for
managing zero-install applications (see Chapter 2.2).

Portable A portable application is a zero-install application that stores user pref-
erences and any other run-time generated data in locations relative to its
installation directory instead of the user profile. This kind of application
can be carried around by users as a self-contained working environment on
a portable medium such as a USB stick.

Windows applications are often available in modified portable versions. A
popular website offering such applications is PortableApps.com. The un-
modified binaries of the applications are bundled with a tool called the
PortableApps.com Launcher, which temporarily changes the system envi-

1xcopy is a DOS/Windows command-line tool for copying entire directory structures.

5

http://portableapps.com

6 CHAPTER 2. BACKGROUND

ronment before launching the application and restores the original system
state after the application terminates[5].

The term portable carries a certain ambiguity since it may also refer to an
application being able to run on multiple operating systems and/or hardware
architectures. To avoid confusion this work will instead use the term cross-
platform to distinguish such applications.

Virtualized A virtualized application is a regular application that was turned into
a zero-install or portable application using an application virtualization sys-
tem.

Application virtualization isolates an application from the underlying op-
erating system by redirecting system calls to a virtualization layer. This
layer will usually overlay the operating system’s actual file system (and
registry) with virtual stores containing required libraries, configuration files,
etc.. This also makes it possible to protect the operating system from un-
wanted changes while selectively allowing modifications to certain areas
(e.g., saving files).

Commercial application virtualization products include VMware ThinApp,
Microsoft App-V and InstallFree Bridge. These products all enable the user
to package existing applications into stand-alone executables2.

Similar effects can sometimes be achieved by running applications within
full-fledged virtual machines with their own operating systems while pro-
viding a communication channel between the physical and virtual machine.
This method can be more reliable than application virtualization because
it provides a much more complete runtime environment for the virtualized
application. However, since this requires an additional operating system to
be running concurrently it is far less efficient.

Native An application that is not a zero-install application, i.e., an application
that modifies the system state during installation, is referred to as a native
application.

This term is also potentially ambiguous, since native can refer to an appli-
cation running directly on the system’s hardware as opposed to a Virtual
Machine (VM) as used in Java and the .NET Framework. Since VM-based
languages are not the focus of this work, native applications can henceforth
be assumed to mean non-zero-install applications in this work.

2A stand-alone executable is an executable that does not depend on any external libraries other
than those provided by the operating system itself.

http://www.vmware.com/products/thinapp/
http://www.microsoft.com/systemcenter/appv/
http://www.installfree.com/the-installfree-bridge/

2.1. COMMON TERMS 7

Desktop integration Apart from copying files to a specific directory, the instal-
lation of a native application usually consists of a number of modifications
to configuration files associated with the desktop environment (GNOME,
KDE, the Windows shell3, etc.). The purpose is to provide easy access to
the application’s features (e.g., open certain file types, browse the web) or
to integrate it with other tools (e.g., add a "burn to CD" function to a file
manager). This kind of modification is called desktop integration. It is dis-
tinct from modification necessary for an application to run in the first place
(e.g., registering shared libraries).

In the Windows world the term shell integration is often used as a synonym
for desktop integration.

Figure 2.1 recapitulates the relations between the aforementioned terms.

Zero-install

Portable

Virtualized
ThinApp App-V InstallFree

Bridge

Zero Install

Portable
Apps.com

Figure 2.1: Virtualized applications are a subset of portable applications, which
in turn are a subset of zero-install applications.

3The Windows shell comprises the desktop, the start menu and any Windows Explorer win-
dows. Upon login an instance of explorer.exe is automatically loaded in order to provide the
shell. While it can be replaced by another executable, the Windows shell is considered to be an
integral part of the operating system.

http://www.gnome.org/
http://www.kde.org/

8 CHAPTER 2. BACKGROUND

2.2 Zero Install

Zero Install is a decentralized platform-independent software-installation system.
It makes it possible to publish individual applications via their project websites
instead of using central repositories while still providing features such as shared
libraries, automatic updates and digital signatures.

Zero Install specifies an XML metadata format for describing software compo-
nents and relationships between them. A single metadata file can contain data for
multiple platforms (e.g., Windows, Linux and Mac OS X).

Zero Install also provides features that go beyond native installation systems.
While it reuses shared libraries whenever possible, it can also handle multiple
versions of a component on a single system at the same time. Unlike Windows’
SxS, Zero Install does not require components to be modified to support this. The
user can manually control which library versions Zero Install shall use for a spe-
cific instance of an application. [6]

Installations have no side effects since each software component is extracted into a
separate directory. This also enabled atomic updates, negating the risk of corrupt-
ing the system in case of a system crash or power failure during an installation.
Users can install new applications without requiring an administrator. [7]

2.2.1 Metadata format

The XML metadata format used by Zero Install is often called the feed format
since these XML files are used in a fashion similar to RSS feeds: The file is
reachable via a fixed URL and is regularly updated with new releases.

An interface is an HTTP URI that uniquely identifies a Zero Install software com-
ponent, while a feed is the actual XML metadata file containing information about
the component. Usually the interface URI4 is identical to the feed URL5; however,
additional feeds can be registered for an interface. This can, for example, be used
to provide an alternative build of an application as a drop-in replacement. A spe-
cific version of a software component listed in a feed is called an implementation
of the interface.

A software component identified by a Zero Install interface can either be an ex-
ecutable application or a library. Feeds for the former specify a default launch

4A Uniform Resource Identifier (URI) specifies the identity of a resource on the internet.
5A Uniform Resource Locater (URL) specifies the location of a resource on the internet as well

as a method of retrieving it. Every URL is a URI but not vice versa.

2.2. ZERO INSTALL 9

command while feeds for the latter do not. Feeds can also contain alternative
launch commands, accommodating scenarios where a single software component
consists of multiple executables (e.g., OpenOffice.org). [8]

Figure B.1 in the appendix shows the complete structure of the feed format.

2.2.2 Launching an application

When Zero Install is instructed to launch an application it processes the request in
three phases:

select phase In this phase the Zero Install solver6 consults all relevant feeds
in order to select a set of implementations that best satisfy the user’s request
(the specified interface URI and optionally additional requirements such as
specific version numbers or platforms) as well as the dependencies between
the components.

download phase In this phase Zero Install downloads any required implemen-
tations. See Chapter 2.2.3 for details.

run phase In this phase Zero Install combines the selected and downloaded im-
plementations to form an executable environment. Based on the principle
of dependency injection7 implementations are made discoverable by each
other by adding their paths to per-process environment variables without
affecting the rest of the system.

download

Archives Manifests

select

Inter-
face

Require
ments

Depend
encies

run

Dependency
injection

Figure 2.2: The Zero Install launch process is split into the phases select,
download and run. Each phase depends on the results of the previous one.

6Zero Install uses a SAT-solver based on MiniSat.
7Dependency injection is a design principle wherein components do not locate their dependen-

cies themselves. Instead, an external dependency manager locates and then injects them.

http://minisat.se/

10 CHAPTER 2. BACKGROUND

2.2.3 Retrieving implementations

Zero Install identifies implementations via cryptographic hashes8 of their con-
tents. This makes it possible to verify downloads and share them among users
safely.[9] These hashes are called manifest digests.

After the solver has selected a set of implementations to satisfy the user’s request
Zero Install checks a local cache directory called the implementation cache. Each
subdirectory represents one implementation and carries its manifest digest as the
name. If a required implementation is missing from the cache Zero Install consults
the feed for instructions on how to retrieve it from the internet.

An archive (e.g., ZIP or TAR.GZ) is downloaded from an HTTP or FTP server
and then extracted to a temporary directory. Next, a so called manifest file – listing
the complete directory structure (sub directories, file names, timestamps, etc.) as
well as hashes of each of the files’ contents – is generated. Finally, a hash of the
manifest file (i.e., manifest digest) is calculated. Figure 2.3 depicts this process.

sha256=a0566751…
Manifest digest

Extracted files

Manifest

Download
(ZIP, TAR.GZ, …)

Archive

Hash

Figure 2.3: Zero Install retrieves implementations by downloading an archive,
extracting it, generating a manifest of the contents and hashing the manifest. This
figure contains content from the Tango Icon Library placed in the public domain.

Zero Install also supports alternative methods for retrieving implementations, such
as combining the contents of multiple archives, but the method for generating
manifest digests stays the same.

8As of version 1.2 Zero Install supports the hashing algorithms SHA-1 and SHA-256.

http://tango.freedesktop.org/Tango_Icon_Library

2.3. RELATED WORK 11

2.3 Related work

Most systems for software installation on desktop operating systems need to deal
with desktop integration in some fashion. Native installation systems usually
modify the desktop environment as a step in the installation process. Zero-install
systems need to handle this in a different way.

2.3.1 Alternative Linux distributions

The Linux distribution GoboLinux installs each version of a component in a self-
contained directory much like Zero Install. This provides a database-less package
management system. To maintain backwards compatibility with traditional Linux
file system layouts the classic directories for executables and libraries still exist
and are populated with symbolic links to the currently active version of each com-
ponent. These symbolic links also determine which version of an application is
used for desktop integration. [10]

NixOS is an experimental Linux distribution based on the package manager Nix.
Unlike most other package managers Nix describes packages and system states us-
ing a functional language. This enables atomic upgrades and rollbacks. On NixOS
new software is not installed. Instead a new system configuration is described and
then activated. Activating a configuration creates symbolic links and desktop in-
tegration entries for the selected components in a fashion similar to GoboLinux.
[11]

Both GoboLinux and NixOS provide many of the same advantages as Zero Install.
However, applying desktop integration is still handled as a side-effect of installing
or activating an application. Both systems require applications to be recompiled
to support their directory naming schemes.

2.3.2 Application virtualization tools

VMware ThinApp[12], Microsoft App-V[15] and InstallFree Bridge[16] isolate
the operating system from any changes virtualized applications attempt to make.
If an application performed any modifications for desktop integration during its
installation phase it will still see them as applied within its virtual environment,
however they will not be visible to other applications.

VMware ThinApp compares snapshots of the system before and after an applica-
tion was installed. It uses the differences between these two snapshots to build a

12 CHAPTER 2. BACKGROUND

virtual environment for the application. It also extracts changes relevant for desk-
top integration (mainly file associations) and stores them as metadata accessible
outside the virtual environment. A command-line tool named thinreg reads
this metadata and creates shortcuts and entries in the real registry to point to the
virtualized executable file. [12]

Microsoft App-V uses a similar snapshot technique. It stores information about
file associations using a modified version of the now obsolete Open Software De-
scription Format[13][14]. When an application is deployed (using the SFTMIME
command-line tool) shortcuts and registry entries are created. [15]

InstallFree Bridge uses a different technique for capturing application installa-
tions: Setup programs run within a virtualized environment and any changes they
make are recorded directly. Desktop integration is handled in a fashion equivalent
to the other solution: Shortcuts, file associations, etc., are stored in the so-called
Shell Shadow and applied to the real system by the Bridge Virtual Agent. [16]

Application virtualization usually aims at reproducing the work environments
users are already accustomed to while removing the deep entanglement between
the applications and the operating system in order to simplify administrative tasks
such as installing and upgrading. In the most basic case, deploying a virtualized
application consists of copying a single executable file to the target computer and
creating a desktop shortcut pointing to that executable file. In order to accommo-
date the aforementioned methods for additional desktop integration this process is
usually wrapped inside a native installation system.

In the end, deploying a virtualized application looks remarkably similar to in-
stalling a regular application. Some form of setup EXE or a Windows Installer
package is executed. However, since these installers were created by the adminis-
trator (within the confines of the virtualization system) it is easier to keep track of
the system changes being made.

Application virtualization systems provide solutions for desktop integration, how-
ever they do not handle desktop integration changes attempted at runtime. Such
changes will simply vanish into the virtual environment, not having any effect on
the desktop environment. Unlike the solution presented in this work, they only
provide the packager/administrator, not the user, with the opportunity to control
which elements of the desktop integration they wish to apply. They do not attempt
to handle conflicts between integration attempts made by different installations.

Application virtualization is generally not intended for use by upstream develop-
ers. Instead, it is geared towards use by in-house IT departments. Non-virtualized
zero-install applications, on the other hand, can be published directly by their de-
velopers.

Chapter 3

Analysis

This chapter analyzes how desktop integration works on the Windows platform.
First, relevant vendor documentation is referenced. Then, real-world installations
are analyzed in order to determine whether all relevant aspects were covered.

3.1 Platform documentation

The MSDN Library is the primary documentation source for Microsoft products
such as Windows. It covers the following aspects relevant for desktop integration.

3.1.1 Shortcuts

The simplest form of desktop integration on the Windows platform is the creation
of shortcut files. Shortcut files are files with the file ending .lnk. They store
a target path and optionally an icon path, a working directory path and a short
description. They are handled by the explorer.exe shell and appear to the
user in a fashion similar to symbolic links. However, other applications see them
as normal files with binary content. Shortcuts can be placed anywhere, but they
are most commonly located in the Start menu and on the desktop.

Windows 98 introduced the Quick Launch bar as an additional location for short-
cuts. It is usually displayed next to the Start menu button on the taskbar. Win-
dows 7 replaced the Quick Launch bar with the concept of pinnable applications,
which are also based on shortcut files.

13

14 CHAPTER 3. ANALYSIS

3.1.2 File associations

Windows differentiates file types based on their extension. A list of known file
types is stored in the HKEY_CLASSES_ROOT subtree of the registry. Each ex-
tension is associated with a programmatic identifier, which in turn contains infor-
mation about the file type. Multiple extensions can point to a single programmatic
identifier, reflecting the possibility of multiple extensions being in use for a single
file type (e.g., .htm and .html for HTML).

A programmatic identifier specifies a human-readable description of the file type,
an icon path and a set of verbs. A verb is an operation that can be performed on a
file such as open or edit. Each verb maps to a specific command-line into which
the path of the file in question is inserted.

An extension can reference additional programmatic identifiers to allow for mul-
tiple applications to handle a single file type. This is represented by the Open
with dialog in the shell. (See Figure A.3 in the appendix for a screenshot.) How-
ever, only the primary programmatic identifier controls the file type description
and icon displayed in the shell. [17]

Figure 3.1 illustrates the aforementioned relations.

Extension

Programmatic identifier

Description
Icon

Verb

Name
Command line

*
Primary 1

*
Additional *

1
1..*

Figure 3.1: In the Windows registry every file extension points to one primary
and an arbitrary number of additional programmatic identifiers. Multiple exten-
sions can share a single programmatic identifier. Every programmatic identifier
specifies one or more verbs.

3.1. PLATFORM DOCUMENTATION 15

3.1.3 URL protocols

A URL protocol is the first part of an absolute URL such as http or ftp. It
usually denotes the communication protocol to be used when contacting a remote
server, however some URL protocols describe an action instead (e.g., mailto
instructs a mail client to create a new mail but not to send it yet).

Windows registers URL protocols directly as programmatic identifiers. In order to
support multiple applications for a single protocol Windows Vista introduced an
additional per-user setting selecting the programmatic identifiers to use for certain
well-known protocols. [18]

3.1.4 Context menus

Windows aggregates data from numerous different sources to populate the context
menu displayed for a file. A so-called association array specifies a set of registry
keys which are queried for data about a particular file type. Among these are
the special programmatic identifiers AllFilesystemObjects representing
all files and directories and * representing all files but not directories. [19]

If an application provides a service applicable to all types of files or entire direc-
tories (e.g., backup tools or virus scanners) it can provide access to that service by
adding a verb to one of the aforementioned programmatic identifiers. [20] (See
Figure A.2 in the appendix for a screenshot.)

In addition to static menu entries that always appear for specific file types, Win-
dows provides a feature called dynamic verbs. These are context menu entries
generated on-demand by COM objects loaded into the shell. These entries can
vary based on a file’s content and not only its extension. [21]

3.1.5 Sent to menu

Windows displays a Send To sub-menu in the context menus for files and directo-
ries. (See Figure A.1 in the appendix for a screenshot.) The entries in this menu
are determined by the shortcut files located in the SendTo directory. Clicking on
one of them launches the according application and passes the selected file or
directory as a command-line argument.

16 CHAPTER 3. ANALYSIS

3.1.6 Default programs

Set Program Access and Computer Defaults (SPAD) is a user interface introduced
in Windows 2000 Service Pack 3 and Windows XP Service Pack 1 to provide the
user with a central location for choosing a default browser, mail client, instant
messenger and media player. (See Figure A.5 in the appendix for a screenshot.)

This feature does not perform any configuration changes by itself. Instead, it
allows applications to register commands that will be called when the user selects
new defaults. The applications are then responsible for registering themselves
appropriately. Any changes made via this user interface are applied system-wide
and therefore require administrative privileges. [22]

The SPAD registry entries for mail clients contain information on how to handle
requests to the mailto: URI scheme. The entries for browsers and mail clients
also control the Browser and Mail icons displayed in the start menu up until Win-
dows Vista. [23]

In Windows Vista SPAD was superseded by the Set Your Default Programs (SYDP)
user interface. The old SPAD interface is still available, however changes made
via the SYDP interface are effective on a per-user level and override the system-
wide entries created by the SPAD interface. (See Figure A.6 in the appendix for a
screenshot.)

The SYDP interface requires applications to explicitly register their capabilities
(i.e., the file types they can open and whether they can act as the default browser
or the default mail client). It allows the user to select which capabilities to apply
as defaults in detail. (See Figure A.7 in the appendix for a screenshot.) The
modifications are applied by the operating system itself instead of delegating the
task to the applications. [24]

3.1.7 AutoPlay handlers

When Windows detects a new medium such as an USB stick or a blank DVD it
automatically displays a dialog box offering the user a number of operations ap-
plicable to that type of medium. (See Figure A.4 in the appendix for a screenshot.)
This feature is called AutoPlay.

The arrival of a new medium is called an AutoPlay event. An application can reg-
ister itself as a handler for such an event, specifying a description of the operation
it will perform (e.g., "Burn data on the CD"), an icon and the command-line to be
executed, should the user chose this option. [25]

3.1. PLATFORM DOCUMENTATION 17

3.1.8 COM servers

The Component Object Model (COM) is an object-oriented system for creating
software components that can interact within and across process boundaries. [26]

Some applications provide automation interfaces for their services to be consumed
by other applications via COM. For example a media player could provide an API
that allows other applications to query and manipulate its database of songs.

Such interfaces are provided via an In-Process COM server (loading dynamically
linked libraries at runtime) or an Out-of-Process COM server (using inter-process
communication). Windows uses the registry to locate the necessary files.

3.1.9 Games Explorer

Windows Vista introduced a new user interface called the Games Explorer. In
addition to being a central listing of all installed games it can display game statis-
tics, provide parental controls, etc.. In order for an application to be listed here it
must provide a game definition file (GDF) embedded within an executable file or
a DLL. [27]

18 CHAPTER 3. ANALYSIS

3.2 Installation monitoring

We selected a number of popular applications, listed in Table 3.1, covering all
forms of desktop integration mentioned in Chapter 3.1. We installed each of these
applications on both a Windows XP and a Windows 7 virtual machine and moni-
tored the changes their installers made using Sysinternals Process Monitor1[28].

We applied the following rules when installing to ensure consistent results:

• Install any required runtime environments such as the .NET Framework or
the Java Runtime Environment before beginning the actual analysis, since
they are not the subject of this work.

• If the installer offers the possibility to install either "For the current user" or
"For all users" perform the entire analysis once for each option.

• Enable all file type associations provided by the installer.

• Enable any additional integration options (e.g., create shortcuts or add in-
stallation directory to PATH) provided by the installer.

• Never install any bundled third-party applications.

• If the installer offers the possibility to install the application in a "portable
mode", storing its settings in its installation directory instead of the user
profile, do not select this option.

All modifications we detected pertinent to desktop integration are covered by
Chapter 3.1.

Some of the installers performed different modification based on the Windows
version they were executed on. They created registry entries for features that are
only available on newer Windows versions, such as SYDP (see Chapter 3.1.6),
only when the current operating system supported them. Other installers simply
created registry entries for all features they supported.

1"Process Monitor is an advanced monitoring tool for Windows that shows real-time file sys-
tem, Registry and process/thread activity."[28]

3.2. INSTALLATION MONITORING 19

Application name Version License Detected modifications
7-zip 9.20 GNU LGPL Context menu (Chapter 3.1.4)
Audacity 1.2.6 GNU GPL
Blender 2.5.7 GNU GPL
CDBurnerXP 4.3.8.2523 Freeware SYDP (Chapter 3.1.6),

AutoPlay (Chapter 3.1.7)
foobar2000 1.1.6 Freeware SYDP (Chapter 3.1.6)
Inkscape 0.48.1-2 GNU GPL
IrfanView 4.28 Freeware SYDP (Chapter 3.1.6)
iTunes 10.2.3 Apple EULA Browser plug-in,

SPAD (Chapter 3.1.6),
SYDP (Chapter 3.1.6),
AutoPlay (Chapter 3.1.7),
COM server (Chapter 3.1.8)

KeePass 1.19b GNU GPL
KeePass 2.15 GNU GPL
LibreOffice 3.4.0 GNU LGPL SYDP (Chapter 3.1.6),

Browser plug-in
Mozilla Firefox 5.0 MPL SPAD (Chapter 3.1.6),

SYDP (Chapter 3.1.6)
Mozilla Thunderbird 5.0 MPL SPAD (Chapter 3.1.6),

SYDP (Chapter 3.1.6)
Notepad++ 5.9 GNU GPL Context menu (Chapter 3.1.4)
OpenOffice.org 3.3.0 GNU LGPL SYDP (Chapter 3.1.6),

Browser plug-in
Opera 11.10 Opera EULA SPAD (Chapter 3.1.6),

SYDP (Chapter 3.1.6)
Pidgin 2.7.11 GNU GPL URL protocols (Chapter 3.1.3)
Skype 5.3 Skype EULA SendTo menu (Chapter 3.1.5),

SPAD (Chapter 3.1.6),
SYDP (Chapter 3.1.6)

Texmaker 3.0.2 GNU GPL
VLC 1.1.9 GNU GPL Browser plug-in,

SYDP (Chapter 3.1.6)
WinMerge 2.12.4 GNU GPL Context menu (Chapter 3.1.4),

Add to system PATH
WinRAR 4.0 Shareware Context menu (Chapter 3.1.4),

SYDP (Chapter 3.1.6)
yEd 3.7 Freeware

Table 3.1: This table lists applications we installed to analyze the system modi-
fications their installers performed. It highlights any modifications going beyond
the registration of file types.

20 CHAPTER 3. ANALYSIS

3.3 Definitions

In everyday usage multiple applications often compete as handlers for a single
element (e.g., default handler for a file type). By separating capabilities from
access points user intentions can be expressed more clearly.

Capabilities A capability tells the desktop environment what an application can
do and in which fashion this can be represented to the user. It does not
change the behavior of existing UI elements.

Examples:

• Add an application to the "Open with" list for a file type, but do not
change the default application for opening it

• Show an application as a candidate for default web browser, mail
client, news reader, etc. but do not set it as such

Access points Access points build upon capabilities and represent more invasive
changes to the desktop environment’s UI.

Examples:

• Register as default application to open a file type with

• Register as default web browser, mail client, news reader, etc.

• Create a desktop shortcut

An exhaustive list of capabilities and access points can be found in Chapter 4.2.

Classic installation systems usually do not discriminate between capabilities and
access points. Modern desktop environments themselves do, to a certain degree
(e.g., Windows’ Default Programs (see Chapter 3.1.6) and GNOME’s Preferred
applications[29]).

3.4. CAPTURING 21

3.4 Capturing

Desktop integration on the Windows platform is mainly governed by the creation
of new registry entries and shortcut files. In order to add desktop integration
support to a zero-install system, we need to extract these data and store them in a
sufficiently abstract form to accommodate for the differences between launching
a native applications and using a zero-install system.

There are a number of different methods commonly used for capturing system
modifications:

Snapshots Snapshot capturing works by recording a snapshot of the system state
before the installation and comparing it with the state afterwards. Cloning
the entire system for this purpose is usually not practical. Instead, a combi-
nation of directory listings, file hashes and registry exports is employed.

This method easily handles installations that require system reboots or in-
volve inter-process communication, but it may pick up a lot of background
noise2 from other system modifications. Modifications might be lost if they
were already applied before the initial snapshot was taken. Therefore, one
should use a clean operating system install in a virtual machine as a base-
line.

VMware ThinApp[12] and Microsoft App-V[14] use this method to build
virtual environments from application installations.

Syscall hooks System-call hooks redirect API calls of a specific process. This
makes it possible to specifically monitor the modifications made by a single
executable, eliminating any background noise.

Simulating parts of the operating system’s API is a relatively complex task
and somewhat error prone. Handling special cases such as communication
with the system-wide Windows Installer service may be prohibitively com-
plicated. Installations that require system reboots are also difficult to handle
since the hooks need to be reinstalled if the installer resumes after the re-
boot.

InstallFree Bridge uses a similar method. Installers are executed in an iso-
lated virtual environment called the IFV Engine Virtual Environment. Any
attempted modifications are recorded instead of being applied to the real
system.[16]

2On a typical Windows system there are hundreds of file system and registry accesses every
second, even when the system is seemingly idle.

22 CHAPTER 3. ANALYSIS

System APIs Windows offers APIs for monitoring the file system[30] and the
registry[31] for modifications. While these are reliable and easy to use, they
do not discriminate between modifications made by different processes.
Thus, inter-process communication during installation is not an issue while
background noise is. In the case of reboots the monitoring application needs
to be resumed before the installer.

Table 3.2 compares the three capturing methods.

Method Isolates processes Handles reboots easily Easy to use
Snapshots No Yes Yes
Syscall hooks Yes No No
System APIs No No Yes

Table 3.2: This table compares different methods for capturing system modifica-
tions. Methods that isolate processes reduce background noise but make handling
inter-process communication more difficult.

Chapter 4

Design

This chapter describes the design of a domain-specific language (DSL) for stor-
ing applications’ desktop integration capabilities. It also presents methods for
automatically recording such capabilities by capturing changes made by native
installers. Finally, we elaborate on methods for making capabilities accessible to
the user via Zero Install.

4.1 Goals

The analysis in Chapter 3 produced a comprehensive list of methods used to pro-
vide desktop integration on the Windows platform. A desktop integration solution
for a zero-install system should be able to handle all applicable integration meth-
ods without sacrificing features such as adding new applications without adminis-
trative rights. Any method a user might normally employ to launch an application
should be tunneled through the zero-install system.

New operating system versions often introduce new methods for interacting with
applications (e.g., the Windows 7 taskbar). The desktop integration solution should
be easily extensible in order to accommodate such new features.

Zero-install systems are inherently more declarative than classic installation sys-
tems. A classic installer might check the current operating system version, the
CPU type and the user interface language upon startup to determine which binaries
to deploy. A zero-install system will defer these decisions to runtime. However,
when applying desktop integration localization decisions (e.g., should a context
menu entry be named "Open" or "Öffnen") need be handled at deployment time.

23

24 CHAPTER 4. DESIGN

The desktop integration solution should therefore provide localization mecha-
nisms for any user-visible metadata it may store.

While the focus of this work is on desktop integration for the Windows platform,
many of the explored concepts are common to all current desktop operating sys-
tems. Windows, GNOME, KDE and Mac OS X all associate file types with appli-
cations that can handle them (although some systems do not exclusively use file
endings to determine file types). These systems also share concepts such as hav-
ing a default browser. The desktop integration solution should therefore consider
cross-platform support where applicable.

One of the major advantages of using Zero Install is the ability to deploy new soft-
ware without requiring administrative rights. Therefore, the desktop integration
solution should apply all changes per-user by default. Administrators should also
be able to apply settings system-wide.

4.2 Domain-specific languages

We designed two closely related DSLs to augment the existing Zero Install feed
format (see Chapter 2.2.1):

Capabilities The Capabilities DSL is embedded within Zero Install feeds. The
existing feed format describes how to launch commands provided by an
application. The new DSL specifies what these commands can be used for
and how this can be presented to the user.

We have also introduced a new concept to the feed format itself comple-
menting the existing commands: An entry point is a command provided
by most (usually all) implementations of an interface, decorated with addi-
tional information such as a localizable name and description and an icon.

Each feed can contain zero or more capability lists. A capability list groups
a set of capabilities (see Chapter 3.3) that are applicable to a specific archi-
tecture (operating system and/or CPU type).

Access points The Application list and access points DSL is used to locally store
user preferences for desktop integration. The application list contains an
entry for each application the user requested desktop integration for.

Each application entry contains a copy of the capability lists from the feed.
This ensures that updates made to the application, and thus the feed, cause
no unexpected changes or inconsistencies in the desktop integration unless

4.2. DOMAIN-SPECIFIC LANGUAGES 25

the user explicitly requests an update. The application itself is still kept
up-to-date automatically by Zero Install.

Each application entry contains a list of access points (see Chapter 3.3)
representing the user’s integration choices. Each access point either points
to a capability (usually registering a default handler of some kind) or to an
entry point (e.g., adding a new icon or menu entry).

Figure 4.1 illustrates the aforementioned relationships between the different DSLs.
Table 4.1 enumerates all capabilities and access points supported by the DSLs and
displays the relationships between them where present.

Application list and
access points DSL

Application
capabilities DSL

Feed format

Feed

Interface URI

Capability list

Architecture

Capability

Application list

Application

Interface URI

Access point

Entry point

Command
Command access point

Default access point

*

1

*

1

*
1

*

1

*

1

*

1

1 *

1 1

Figure 4.1: The Capabilities DSL is embedded within Zero Install feeds. The
Application list and access points DSL contains access points and copies of capa-
bilities. Access points either reference capabilities or entry points.

Figure B.2 in the appendix shows the complete structure of the Capabilities DSL.
Figure B.3 in the appendix shows the complete structure of the Application list
and access points DSL.

26 CHAPTER 4. DESIGN

Capability Access point
Register file type handler Set as default handler
Register URL protocol handler Set as default handler
Register AutoPlay handler Set as default handler
Register default program candidate Set as default program
Store context menu entry Register context menu entry
- Menu entry
- Desktop icon
- Quick Launch bar icon
- Send To menu entry
- Command-line alias

Table 4.1: Every capability has a corresponding access point the user can choose
to create. Some access points do not refer to specific capabilities.

4.3 Capturing

When developing an application with the intention of publishing it as a Zero In-
stall feed (see Chapter 2.2.1) an author can encode capabilities directly in the
Capabilities DSL (see Chapter 4.2). However, Zero Install is often used to pub-
lish existing applications, which usually already have an installer to perform the
integration. Reproducing the steps these installers perform manually would be
cumbersome. Therefore, we wish to capture the changes an installer makes and
isolate those relevant for desktop integration.

Of the capturing methods listed in Chapter 3.4 we decided to use Snapshots, since
they are the only method that can handle setups that require a reboot and are easy
to implement. The problem with background noise can be countered sufficiently
by only monitoring very specific locations, such as the list of registered file types
or the common shortcut locations.

4.4 Applying desktop integration

Data stored in the Capabilities DSL (see Chapter 4.2) are applied to the current
system when the user decides to add/register/install an application via Zero Install.
As a part of this process the user choses which access points to create/apply.

When applying capabilities and access points two entries can potentially be in
conflict with each other. For example there cannot be two different desktop icons
with the same name and two applications cannot both be the default handler for a

4.5. SYNCHRONIZATION 27

file type. In order to reliably detect such conflicts Zero Install calculates a conflict
ID for each capability and access point.

All conflict IDs exist within a common namespace. If two elements (possibly from
different applications) have an identical conflict ID they cannot be simultaneously
applied to a single system. Conflict IDs are usually a concatenation of the element
type and its regular ID (thus preventing things like two menu entries with the same
name) however they can also detect conflicts between elements of different types
(e.g., a file type and a URL protocol handler sharing a common registry location).

After confirming that integration changes requested by the user do not cause any
conflicts, Zero Install applies the new settings to the system and stores the accord-
ing metadata using the Application list and access points DSL (see Chapter 4.2).

4.5 Synchronization

The Application list and access points DSL (see Chapter 4.2) stores all desktop
integration choices made by the user and can therefore be used to reproduce a
working environment on another machine.

Zero Install uses this to provide a server-based synchronization feature. The ap-
plication list is mirrored from and to an HTTP server using HTTP GET and HTTP
PUT 1. All user data is encrypted locally before transmission with AES-128 using
a private key. This ensures both data confidentiality2 and data consistency3 even
if the server is compromised.

The synchronization algorithm works as follows:

1. Download existing data from the server if present and decrypt it.

2. Merge the data from the server into the local application list using a three-
way merge4.

3. Apply any changes made to the application list to the desktop environment.

4. Encrypt and upload the new application list.

1HTTP defines multiple request methods. The most common are GET, used to retrieve data,
and POST, used to submit data for processing. PUT, used to set data in an idempotent fashion, is
less common.

2In the context of computer security data confidentiality describes the ability of a data storage
or transmission system to prevent unauthorized users from reading data.

3In the context of computer security data consistency describes the ability of a data storage or
transmission system to prevent unauthorized users from modifying data without being detected.

4A three-way merge combines changes from two files that share a common ancestor.

28 CHAPTER 4. DESIGN

5. Store a copy of the application list locally for use as a baseline for the next
merge.

Figure 4.2 illustrates the aforementioned design.

Application
list as XML

AES-128
encryption

UploadDownload

AES-128
decryption

HTTP PUTHTTP GET

3-way merge

Figure 4.2: Zero Install synchronizes the application list between the local ma-
chine and an HTTP server using a three-way merge. All user data is encrypted
locally with AES-128. This figure contains content from the Tango Icon Library
placed in the public domain.

http://tango.freedesktop.org/Tango_Icon_Library

Chapter 5

Implementation

This chapter details how we implemented the design decisions from Chapter 4
and what difficulties we came across in doing so.

5.1 Tools and libraries

The original Zero Install system introduced in Chapter 2.2 was developed using
Python and was intended for use on POSIX systems such as Linux and Mac OS X.
Outside the scope of this work, we have developed a Windows port of Zero In-
stall using the existing Python code for solving dependencies but rewriting the
downloading, file-system access and user interface code in C#.

The implementation presented in this work builds upon the Windows port of Zero
Install.

We used the following tools and libraries for our implementation:

• C# 2.0 as the main programming language,
Visual Studio 2010 as an integrated development environment

• C5 Generic Collection Library 1.1.0 for advanced collection data structures,
INI File Parser v1.5.5 to store non-XML configuration data,
NDesk.Options 0.2.1 for parsing command-line arguments,
NUnit 2.5.10 for unit tests

• SharpZipLib 0.86.0 for ZIP and TAR compression support,
LZMA SDK 4.65 for LZMA compression support

• EasyHook 2.6 for API hooking (see Chapter 5.5)

29

30 CHAPTER 5. IMPLEMENTATION

5.2 Installation capturing

We implemented the design for capturing desktop integration data chosen in Chap-
ter 4.3 in a command-line tool called 0capture.

0capture stores all data related to a capture process in a working directory
called the capture directory.

When you instruct 0capture to take snapshots of the system state before and
after installing a new application it will collect a list of registry keys relevant to
desktop integration as well as a list of all subdirectories of the Program Files
directory. This data is stored on-disk in a binary format to allow the process to
span system reboots.

In the final step 0capture compares the two snapshots in order to detect newly
created registry keys and file system directories. It then collects data from these
registry keys and the installation directory to generate a Zero Install feed file with
embedded desktop integration data.

Figure 5.1 depicts the aforementioned work-flow for capturing an application in-
stallation.

Create
capture
directory

0capture
init

Pre-
installation
snapshot

0capture
snap-pre

Install
application

Post-
installation
snapshot

0capture
snap-post

Collect
data

0capture
collect

Figure 5.1: The 0capture command provides a set of sub-commands that are
called in a specific sequence to capture the installation of an application.

0capture uses heuristics to locate an application’s main executable and descrip-
tion. Therefore, the generated feed files are only intended as starting points that
save a developer the work of manually creating capability entries for numerous
file type handlers, etc.. Download sources, missing descriptions and localizations
need to be added manually.

0capture is not intended to automatically make native applications portable.
While many applications can be redistributed by packaging the contents of their
installation directory shared libraries installed to other locations may cause prob-
lems. One possible strategy for such cases is to use a native installer version of
an application to capture its desktop integration but to apply the captured data to
a portable version of the same application.

5.3. APPLYING DESKTOP INTEGRATION 31

5.3 Applying desktop integration

Our extended version of Zero Install provides the following commands for man-
aging desktop integration:

• 0install add-app adds an application to the application list without
applying any desktop integration.

• 0install integrate-app registers an application’s capabilities and
allows the user to specify any desired access points.

• 0install remove-app removes an application from the application
list and removes all capabilities and access points from the system.

• 0install add-alias / 0alias creates a command-line alias access
point.

You can instruct Zero Install to launch an application with a command line like:
0install run Interface URI
When applying desktop integration Zero Install creates shortcuts and registry en-
tries pointing to such command lines.

Zero Install keeps track of any applied desktop integration changes in a file called
app-list.xml using the Application list and access points DSL (see Chap-
ter 4.2). If an error occurs during any part of an integration operation all already
applied changes are rolled back. Since this does not protect against system-wide
crashes desktop integration operations are not truly atomic.

In order to prevent race conditions Zero Install uses a Windows mutex[33] to pre-
vent multiple desktop integration processes from running simultaneously.

5.3.1 Limitations

Our current implementation does not support COM server (see Chapter 3.1.8) or
Games Explorer (see Chapter 3.1.9) registration.

In-Process COM servers cannot be provided via Zero Install since it is unable
to inject dependencies into running processes. Application virtualization systems
such as ThinApp suffer from the same problem. [12]

Out-of-Process COM servers and the Games Explorer both require direct access to
the application’s binaries. Since Zero Install’s desktop integration is independent
from specific implementations Zero Install would need to generate some form of
surrogate files.

32 CHAPTER 5. IMPLEMENTATION

5.4 Stubs

Windows user interfaces that provide a choice of multiple applications (e.g., the
Open with dialog) extract the application names and icons from the executable
files referenced by the according registry entry. (See Figure A.3 in the appendix
for a screenshot.) If Zero Install created registry entries pointing to
0install run interface URI
Windows would always display the Zero Install icon and name instead of the meta-
data of the actual application being launched.

We solved this problem by generating stubs. A stub is a small executable that sim-
ply executes another command and passes through any command-line arguments.
For each 0install command that needs to be added to the registry we generate
an according stub and embed the name and icon of the target application.

Zero Install uses the .NET Framework’s built-in runtime C# compiler[32] to gen-
erate stubs on demand. In order to reduce the number of stubs that need to be
compiled Zero Install employs a caching scheme: Reusable stubs are identified
by a cryptographic hash of the interface URI and command name used to start
the target application. They are placed in directories named after this hash. The
executable files themselves are named like the executables of the target applica-
tions to make their processes more recognizable in the task manager. Figure 5.2
illustrates the composition of a stub’s directory and file name.

Interface URI Command name Binary name

http://mozilla.org/
firefox.xml

safe-mode firefox

SHA-256

...\stubs\e55b7669206cfd44fe6676b53...\firefox.exe

Figure 5.2: Each stub is placed in a separate directory whose name is generated
by hashing the interface URI and the command name. The file name of the stub
itself is determined by the binary name specified by the entry point.

Stubs are also used to provide command-line aliases. In order to make a stub
discoverable without its complete path Zero Install adds an App Path entry to the
registry. [34]

5.5. API HOOKING 33

5.5 API hooking

An application launched via Zero Install may attempt to perform its own desk-
top integration. It would incorrectly assume that it could be relaunched in future
simply by executing the path of its main executable located in the implementation
cache (see Chapter 2.2.3). Registry entries created by such an application would
bypass Zero Install on startup. This would lead to a number of problems:

• If an application has dependencies Zero Install’s dependency injection (see
Chapter 2.2.2) would not be able to provide them.

• If a new version of an application becomes available Zero Install will place
it in a new directory in the implementation cache. The registry entries would
continue to point to the old version.

We handle this issue by intercepting registry access attempted by applications
launched via Zero Install and transparently replacing paths of binaries located
within the implementation cache with paths of stubs.

5.5.1 Hooking library

Most libraries for intercepting/hooking system calls use a method called DLL in-
jection. Hereby, a process is forced to load an external DLL and execute code
from it. This code then replaces the methods to be hooked with new code. Usu-
ally, the hooked methods perform additional operations or modify parameters and
then pass the control on to the original method. [35]

Our implementation uses the EasyHook library, which provides DLL injection and
API hooking for the .NET Framework, to hook a number of Win32 API1 methods.
[36]

5.5.2 Filtering registry access

In order to filter an application’s view of the Windows registry we need to hook
the following Win32 API methods:

• RegQueryValueEx() for read access to the registry [37]

• RegSetValueEx() for write access to the registry [38]

1The Win32 API is the API provided by modern Windows versions, starting with Windows 95.

34 CHAPTER 5. IMPLEMENTATION

Before starting the target process Zero Install builds a string replacement table
mapping each executable within the chosen implementations to its corresponding
0install stub.

Whenever the application attempts to write a string to the registry the API hook
checks to determine whether the string starts with an entry listed in the replace-
ment table and performs a substitution if a match is found. On registry reads re-
turning a string the API hook performs the converse replacement. Any application
checking to see whether it is currently integrated with the desktop environment
will therefore not see the changes made by Zero Install.

Since RegQueryValueEx() writes to a buffer provided by the calling appli-
cation and may require buffer resizing modifying result data is non-trivial. Fig-
ure C.1 in the appendix contains a sequence diagram illustrating the algorithm we
employ to handle this.

5.5.3 Child processes

Zero Install must ensure that the API hooks are also applied to any child processes
launched from within the same implementation. In order to detect the creation of
new processes we need to hook the following Win32 API method:

• CreateProcess() [39]

When the application attempts to start a new process the API hook determines
whether the target executable is located within the same implementation direc-
tory. If this is the case the new process is created with a suspended main thread,
enabling the installation of the API hooks before any application code is executed.
Figure C.2 in the appendix contains a sequence diagram illustrating the algorithm
we employ to handle this.

If an application launches a child process with elevated privileges via User Ac-
count Control (introduced in Windows Vista) Zero Install will not be able to install
the API hooks there. This is because injecting a DLL into a foreign process re-
quires the PROCESS_CREATE_THREAD right. A process running with a Normal
integrity level does not have this right for processes with a High integrity level (set
by UAC upon elevation). [40]

5.5. API HOOKING 35

5.5.4 Windows 7 taskbar

Windows 7 introduced a new taskbar that allows the user to pin a running ap-
plication. This creates a shortcut to the application that takes its place once it
terminates and allows the application to be relaunched in future. [41]

By default, Windows creates shortcuts that point to the executables the processes
were launched from. This leads to a problem analogous to the previously discus-
sion registry issue. However, Windows allows applications to specify alternative
relaunch commands to use for these shortcuts for each window.[42]

In order to detect the creation of new windows we need to hook the following
Win32 API method:

• CreateWindowEx()[43]

Whenever a new window is created we set the relaunch command to the appro-
priate 0install command. Additionally, we add entries to application’s jump
list[44] that allow the user to invoke the Zero Install user interface to select a
different version of the application.

36 CHAPTER 5. IMPLEMENTATION

Chapter 6

Evaluation

This chapter evaluates the implementation under the following aspects:

• Ability of 0capture to collect data relevant to desktop integration

• User-visible differences between desktop integration performed by Zero In-
stall and native installers

• Performance impact caused by using Zero Install

• Reliability of API hooking

It concludes with a discussion of the results in the context of the real-world appli-
cability of Zero Install.

6.1 Methodology

We used 0capture to capture the system modifications performed by a sub-
set of the applications listed in Table 3.1. To determine user-visible differences
between desktop integration performed by Zero Install and native installers we
created a set of use-case scenarios for these applications. These use cases were
then each executed once using applications installed natively and once using the
same applications integrated by Zero Install.

We measured the performance impact caused by Zero Install by comparing the
average startup time of applications when launched directly with the startup times
when launching them via Zero Install (both with and without API hooking).

37

38 CHAPTER 6. EVALUATION

In order to assess the reliability of the API hooking we compared the runtime
behavior of applications with API hooking turned on and off. If an application
behaved correctly when API hooking was active we checked whether all desktop
integration attempts performed at runtime were transformed into references to
stubs (see Chapter 5.4).

6.2 Use cases

The following use cases assume that all involved applications have already been
integrated into the desktop environment and set as default handlers for their re-
spective capabilities. Unless specified otherwise they are intended to be executed
on Windows XP.

UC1a Launch Audacity via the start menu,
save a new .aup project file to the disk,
close Audacity,
locate the new file and double-click on it (should reopen Audacity).

UC1b Launch Blender via the start menu,
save a new .blend file to the disk,
close Blender,
locate the new file and double-click on it (should reopen Blender).

UC1c Launch OpenOffice.org Writer via the start menu,
save an empty .odt document,
close OpenOffice.org Writer,
locate the new file and double-click on it (should reopen OpenOffice.org
Writer).

UC2a Launch Mozilla Firefox via the Internet button in the start menu,
browse to a website containing a mailto: link and click on it (should
open Mozilla Thunderbird).

UC2b Launch Mozilla Thunderbird via the E-Mail button in the start menu,
open a mail containing an http: link and click on it (should open Mozilla
Firefox).

UC3 Launch WinMerge via the command-line (prepare with 0alias),
open the About dialog and click on the WinMerge homepage link (should
open Mozilla Firefox),
browse to a website containing an xmpp: link and click on it (should open
Pidgin).

6.3. BENCHMARKS 39

UC4a Open the Windows SPAD dialog (see Chapter 3.1.6),
set Internet Explorer and Outlook Express as default browser and mail client
respectively,
set Mozilla Firefox and Mozilla Thunderbird as default browser and mail
client respectively,
execute UC2a and UC2b.

UC4b Execute this on Windows 7:
Open the Windows SYDP dialog (see Chapter 3.1.6),
set Windows Media Player as default handler for all music formats,
set foobar2000 as default handler for all music formats,
double-click on a music file (should open foobar2000).

UC5 Insert a blank DVD into a DVD-R drive,
select Burn a disc using CDBurnerXP in the AutoPlay dialog (should open
CDBurnerXP).

6.3 Benchmarks

We used the tool PassMark AppTimer 1.0[45] to measure the startup times of
applications. We configured the tool to detect an application as fully launched as
soon as its main window started accepting user input.

To ensure consistent measurements with warm caches (reducing the IO impact
and highlighting the actual processing time) we launched each configuration six
times consecutively, discarding the first measurement and averaging the remaining
results.

Using Sysinternals Process Monitor[28] we determined the number of calls each
application made to hooked API methods (see Chapter 5.5) during its startup pro-
cess.

We performed all measurements on a system with the following specifications:

Component Model/Specification
CPU AMD Phenom II X6 1055T (6x 2.8 GHz)
Memory 4.0 GB
Operating System Windows 7 Service Pack 1 x64

40 CHAPTER 6. EVALUATION

6.4 Results

Table 6.1 contains a list of applications we captured using 0caputre. It details
what was captured automatically and what we added manually. Automatic cap-
turing does not detect icons for applications or their file types. These were always
added manually.

All use cases listed in Chapter 6.2 provided identical user experiences with and
without Zero Install except for a Zero Install dialog and a short delay whenever a
new application was launched.

Table 6.2 and Table 6.3 contain the results of our performance benchmarks.

Table 6.4 shows the results for our analysis of the API hooking reliability.

6.5 Discussion

The results indicate that Zero Install’s desktop integration works but that there are
a number of areas of possible improvement.

6.5.1 Capturing

0capture can capture most application capabilities supported by Zero Install
automatically. Icons currently always need to be added manually. This could be
automated in a future version by extracting icon resources from executables.

Zero Install does not support advanced context menus since they require In-Process
COM servers (see Chapter 5.3.1). In some cases equivalent functionality can be
provided by using normal context menus instead. However, context menus that
vary based on the file’s content are not possible. This makes this method of desk-
top integration less suitable for applications like file compression utilities.

The installation of browser plug-ins is not handled. Supporting this would require
Zero Install to be extended with a feature for externally specifying additional im-
plementations to be injected into applications (i.e., a plug-in mode).

6.5. DISCUSSION 41

Application Captured Manual Unable to map
7-zip File types Context menu Adv. context menu
Audacity File types
Blender File types
CDBurnerXP File types,

SYDP,
AutoPlay

foobar2000 File types,
SYDP,

Inkscape File types
IrfanView File types,

SYDP,
KeePass File types
LibreOffice File types, Browser plug-in

SYDP
Mozilla Default browser,
Firefox SPAD,

SYDP
Mozilla Default mail client, Newsreader
Thunderbird SPAD,

SYDP
Notepad++ File types, (Adv. context menu)

Context menu
OpenOffice.org File types, Browser plug-in

SYDP
Pidgin URL protocols
Texmaker File types
VLC File types, Browser plug-in

SYDP
WinMerge Context menu (Adv. context menu)
WinRAR File types Context menu Adv. context menu
yEd File types

Table 6.1: This table lists applications we captured with 0catpure. The sec-
ond column enumerates capabilities that were automatically captured. The third
column contains capabilities we added to the generated feeds manually. The last
column lists capabilities we were unable to map with Zero Install. Capabilities
written in parentheses were replaced with other capabilities providing equivalent
functionality.

42 CHAPTER 6. EVALUATION

Startup time
Zero Install

Application Native Without Hooking With hooking API calls
Audacity 195 ms 1570 ms 1910 ms 387
CDBurnerXP 760 ms 2103 ms 2290 ms 472
Mozilla Firefox 335 ms 1738 ms 1934 ms 1066
VLC 167 ms 1660 ms 1978 ms 444
WinMerge 233 ms 1506 ms 1800 ms 728

Table 6.2: This table shows the startup times we measured for a set of sample
applications. The last column indicates the number of calls each application made
to hooked API methods (see Chapter 5.5) during its startup process.

Application Solving time Injection time Injection time per API call
Audacity 1375 ms 240 ms 620 ns
CDBurnerXP 1343 ms 187 ms 396 ns
Mozilla Firefox 1403 ms 196 ms 184 ns
VLC 1493 ms 318 ms 716 ns
WinMerge 1273 ms 294 ms 404 ns
Average 1377 ms 247 ms 464 ns

Table 6.3: This table contains values derived from Table 6.2. The second column’s
values are calculated by subtracting the native startup times from the startup times
with Zero Install without API hooking. The third column’s values are calculated
by subtracting the Zero Install startup times without API hooking from the startup
times with API hooking. The last column’s values are calculated by dividing the
values from the second column by the number of hooked API calls during startup.

Application Crashes Handled Not handled
Audacity File types
foobar2000 RegQueryEx File types
LibreOffice CreateWindowEx Browser plug-in
Mozilla Firefox RegQueryEx Default browser
Notepad++ File types Adv. context menu
OpenOffice.org CreateWindowEx Browser plug-in
WinMerge Installation path

Table 6.4: This table lists a set of applications that perform desktop integration
operations at runtime. The second column indicates what hooked API methods
cause the applications to crash. The third column lists integrations successfully
handled by the hooking DLL. The last column lists integrations not handled by
the hooking DLL.

6.5. DISCUSSION 43

6.5.2 Use cases

The execution of the use cases was not impaired by Zero Install’s desktop integra-
tion.

• The results for use cases UC1a, UC1b and UC1c show that Zero Install is
capable of handling file type associations both with single-entry-point and
multi-entry-point applications.

• The use case UC2a and UC2b results demonstrate that registration as de-
fault programs via Zero Install works.

• Use case UC3 combines command-line aliases and the registration of cus-
tom URL protocol handlers.

• The use cases UC4a and UC4b demonstrate Zero Install’s integration with
Windows’ own user interfaces for managing default programs.

• The results for use case UC5 show that the Zero Install AutoPlay support
works.

6.5.3 Performance

The values in Table 6.3 derived from the performance benchmarks show that the
startup of an application is slowed down by Zero Install by approximately 1,4
seconds on average (assuming all required implementations have already been
downloaded). This value may be improved in future by optimizing the code used
to solve dependencies, which currently uses inter-process communication to del-
egate work to a Python process.

The API hooking increases the average startup time of applications by less than
250 ms. While this delay lies beyond the 0.1 s threshold for what users commonly
experience as instantaneous, it is well below the 1 s threshold indicating that addi-
tional user feedback is necessary to retain the impression of responsiveness. [46]

The API hooking delay is caused in part by additional work performed by Zero
Install to inject the hooking DLL and in part by Win32 API methods slowed down
by hooking. Therefore, dividing this delay by the number of hooked API calls
during startup yields an upper bound for the delay caused by a single call to a
hooked method. With an average delay per call of 464 ns a single user operation
would have to trigger more than 215 hooked API calls to cause a noticeable delay
(beyond 100 ms).

44 CHAPTER 6. EVALUATION

According to the EasyHook documentation[36], delays caused by API hooks writ-
ten in a managed (.NET-based) language can sometimes cause delays in the mil-
lisecond area, whereas hooks written in C are several orders of a magnitude faster.
This is mainly due to the parameter conversions .NET requires for interaction with
C code (called marshalling). Our API hooking implementation code be rewritten
using C to gain such performance improvements.

6.5.4 Stability

The API hooking properly handles all runtime integration attempts that are sup-
ported by Zero Install. Unsupported capabilities such as advanced context menu
entries and browser plug-ins are ignored.

A number of applications crash unexpectedly when hooked API methods are in-
voked. Preliminary analyses suggest that these applications allocate memory for
buffers passed to the API methods without allowing write-access for regular pro-
cesses. Presumably, the system’s kernel is able to write to these buffers while the
hooking DLL is not able to. Further analysis, preferably with access to the source
code of the affected applications, is needed to confirm this.

When filtering data being written to the registry the hooking API can replace the
input string buffer with a new one. This has shown to work reliably. However,
when filtering data read from the registry strings need to be written to buffers
provided by the application, thus causing the aforementioned crashes.

Chapter 7

Conclusion

The main objective of this work was to improve the state of desktop integration
for zero-install systems in comparison with native installation systems. For that
purpose we designed a domain-specific language to describe desktop integration
and extended Zero Install to use data stored this language.

The implementation at hand can be used to automatically capture the installation
of numerous productivity applications and convert them into Zero Install feeds
without losing their desktop integration.

The evaluation showed that desktop integration performed by Zero Install can pro-
vide a user experience equivalent to that provided by native installers for most use
cases. However, some scenarios requiring API hooking are not handled reliably
by the current implementation. Future versions could handle this using techniques
from the domain of application virtualization.

7.1 Future work

Our implementation could be improved to handle the registration of out-of-process
COM servers by providing a proxy COM server. This proxy would perform
Zero Install’s usual implementation startup process and then pass all method calls
through to the actual application.

Support for the Windows Games Explorer could be implemented by generating
the required embedded game definition file on demand instead of providing a pre-
compiled one with the application’s implementation.

45

46 CHAPTER 7. CONCLUSION

The Desktop Entry Specification[47] published by the freedesktop.org project pro-
vides a common method for integrating applications with multiple Linux desktop
environments. A .desktop file stores information about an application in a key-
value store, such as an icon path and localized descriptions. The existing Zero
Install version for Linux uses this to create menu entries for feeds. It could be
extended to use data stored in the Capabilities DSL to add information about sup-
ported file types to the .desktop files and the Shared MIME-info Database[48].

Mac OS X applications are distributed as so called application bundles. These
are self-contained directories that combine the binaries necessary to execute an
application with metadata describing it, including the file types it supports. The
desktop environment automatically detects the presence of such bundles and per-
forms appropriate desktop integration. [49] Zero Install could be enhanced to
create application bundles with embedded desktop integration data as launcher
stubs.

Launching an application via Zero Install always entails a call to the command
0install run. Our implementation ensures that all available methods of
desktop integration use to this single point of entry. This could also be used to
redirect local application launches into virtual machines, terminal servers, etc.
without loss of desktop integration.

Appendix A

Screenshots

This appendix contains screenshots taken from various versions of the Microsoft
Windows operating system, used to illustrate interfaces relevant for desktop inte-
gration.

47

48 APPENDIX A. SCREENSHOTS

Figure A.1: This screenshot shows the Send To menu displayed for a file on Win-
dows XP. It contains an entry created by the installation of Skype. Clicking on this
entry would pass the file’s path to Skype for transmission.

Figure A.2: This screenshot shows the context menu displayed for a file on Win-
dows XP. It contains entries created by the installation of WinMerge. Clicking on
one of these entries would pass the file’s path to WinMerge for comparison.

49

Figure A.3: This screenshot shows the Open with dialog displayed for a JPG file
on Windows XP. It lists applications registered as handlers for JPG files as well as
other known applications. The user can use this dialog to temporarily override the
default handler or permanently change it.

50 APPENDIX A. SCREENSHOTS

Figure A.4: This screenshot shows the AutoPlay dialog on Windows 7 when a
blank DVD is inserted, listing possible actions. It contains an entry created by the
installation of CDBurnerXP. Clicking on this entry would pass the drive letter to
CDBurnerXP.

51

Figure A.5: This screenshot shows the Set Program Access and Computer De-
faults dialog on Windows XP. It contains an entry created by the installation of
Mozilla Firefox. Selecting this entry would invoke a helper application provided
by Mozilla Firefox.

52 APPENDIX A. SCREENSHOTS

Figure A.6: This screenshot shows the Set Your Default Programs dialog on Win-
dows 7. It contains entries created by the installation of Mozilla Firefox, foo-
bar2000, IrfanView, iTunes, Skype and WinRAR. Clicking on Set this program as
default would cause Windows to register any applicable defaults for the current
user. Clicking on Choose defaults for this program would lead to the dialog de-
picted in A.7.

53

Figure A.7: This screenshot shows the Set Your Default Programs sub-dialog for
selecting specific file type and URL protocol handlers to register. This example
depicts the options provided for Mozilla Firefox.

54 APPENDIX A. SCREENSHOTS

Appendix B

XML formats

This appendix contains class diagrams describing various XML-based domain-
specific languages. A class corresponds to an XML tag, a field corresponds to an
XML attribute and an aggregation indicates that one tag is nested within another.

Complete specifications as well as XML Schema files for the languages can be
found here:

• Zero Install feed format (Figure B.1):
[8] and http://0install.de/schema/injector/interface/

XML namespace:
http://zero-install.sourceforge.net/2004/injector/interface

• Capabilities DSL (Figure B.2):
http://0install.de/schema/desktop-integration/capabilities/

XML namespace:
http://0install.de/schema/desktop-integration/capabilities

• Application list and access points DSL (Figure B.3):
http://0install.de/schema/desktop-integration/app-list/

XML namespace:
http://0install.de/schema/desktop-integration/app-list

55

http://0install.de/schema/injector/interface/
http://0install.de/schema/desktop-integration/capabilities/
http://0install.de/schema/desktop-integration/app-list/

56 APPENDIX B. XML FORMATS

ru
n
n
e
r

+
 a

rg
 :

 S
tr

in
g[

*]
+

 c
om

m
an

d
:

St
ri
ng

co
m
m
a
n
d

+
 a

rg
 :

 S
tr

in
g[

*]
+

 n
am

e
:

St
ri
ng

+
 p

at
h

:
St

ri
ng

1

ru
nn

er

0.
.1

w
o
rk
in
g
-d
ir

+
 s

rc
 :

 S
tr

in
g

1

w
or

ki
ng

-d
ir

0.
.1

+
 a

rc
h

:
St

ri
ng

+
 d

oc
-d

ir
 :

 S
tr

in
g

+
 la

ng
s

:
St

ri
ng

+
 li

ce
ns

e
:

St
ri
ng

+
 m

ai
n

:
St

ri
ng

+
 r

el
ea

se
d

:
St

ri
ng

+
 s

el
f-

te
st

 :
 S

tr
in

g
+

 v
er

si
on

 :
 S

tr
in

g
+

 v
er

si
on

-m
od

ifi
er

 :
 S

tr
in

g

1

co
m

m
an

d *

fe
e
d

+
 c

at
eg

or
y

:
St

ri
ng

[*
]

+
 h

om
ep

ag
e

:
St

ri
ng

+
 m

in
-in

je
ct

or
-v

er
si

on
 :

 S
tr

in
g

+
 n

am
e

:
St

rin
g

+
 n

ee
ds

-t
er

m
in

al
 :

 B
oo

le
an

+
 u

ri
 :

 S
tr

in
g

1

el
em

en
t *

fe
e
d
-r
e
fe
re
n
ce

+
 a

rc
h

:
St

ri
ng

+
 la

ng
s

:
St

ri
ng

+
 s

rc
 :

 S
tr

in
g 1

fe
ed

*

in
te
rf
a
ce
-r
e
fe
re
n
ce

+
 in

te
rf

ac
e

:
St

ri
ng

1

fe
ed

-f
or

*

lo
ca
liz
a
b
le
-s
tr
in
g

+
 la

ng
 :

 S
tr

in
g

+
 V

al
ue

 :
 S

tr
in

g
1

su
m

m
ar

y

1.
.*

1

de
sc

ri
pt

io
n

*

ic
o
n

+
 h

re
f

:
St

ri
ng

+
 t

yp
e

:
St

ri
ng1

ic
on

*

st
a
b
ili
ty

«e
nu

m
er

at
io

n»

bu
gg

y
de

ve
lo

pe
r

in
se

cu
re

pa
ck

ag
ed

st
ab

le
te

st
in

g

1

st
ab

ili
ty

1

d
e
p
e
n
d
e
n
cy

+
 in

te
rf

ac
e

:
St

ri
ng

+
 u

se
 :

 S
tr

in
g

1

re
qu

ir
es *

1

re
qu

ir
es *

co
n
st
ra
in
t

+
 b

ef
or

e
:

St
ri
ng

+
 n

ot
-b

ef
or

e
:

St
ri
ng

1

ve
rs

io
n

*

1

bi
nd

in
g *

1 bi
nd

in
g

*

1

bi
nd

in
g *

e
n
vi
ro
n
m
e
n
t

+
 d

ef
au

lt
:

St
ri
ng

+
 in

se
rt

 :
 S

tr
in

g
+

 n
am

e
:

St
ri
ng

+
 s

ep
ar

at
or

 :
 S

tr
in

g
+

 v
al

ue
 :

 S
tr

in
g

e
n
vi
ro
n
m
e
n
t-
m
o
d
e

«e
nu

m
er

at
io

n»

ap
pe

nd
pr

ep
en

d
re

pl
ac

e

1

m
od

e
1

o
ve
rl
a
y

+
 m

ou
nt

-p
oi

nt
 :

 S
tr

in
g

+
 s

rc
 :

 S
tr

in
g

g
ro
u
p

1

el
em

en
t

*

im
p
le
m
e
n
ta
ti
o
n

+
 id

 :
 S

tr
in

g
+

 lo
ca

l-
pa

th
 :

 S
tr

in
g

p
a
ck
a
g
e
-i
m
p
le
m
e
n
ta
ti
o
n

+
 d

is
tr

ib
ut

io
ns

 :
 S

tr
in

g
+

 p
ac

ka
ge

 :
 S

tr
in

g

1

re
tr

ei
va

l-
m

et
ho

d
*

re
ci
p
e

1

st
ep

1.
.*

a
rc
h
iv
e

+
 e

xt
ra

ct
 :

 S
tr

in
g

+
 h

re
f

:
St

ri
ng

+
 s

iz
e

:
In

te
ge

r
+

 s
ta

rt
-o

ff
se

t
:

In
te

ge
r

+
 t

yp
e

:
St

ri
ng

m
a
n
if
e
st
-d
ig
e
st

+
 s

ha
1

: S
tr

in
g

+
 s

ha
1n

ew
 :

St
rin

g
+

 s
ha

25
6

: S
tr

in
g

1

m
an

ife
st

-d
ig

es
t 1

im
p
o
rt
a
n
ce

«e
nu

m
er

at
io

n»

es
se

nt
ia

l
re

co
m

m
en

de
d

1

im
po

rt
an

ce 1

e
n
tr
y-
p
o
in
t

+
 b

in
ar

y-
na

m
e

:
St

ri
ng

+
 c

om
m

an
d

:
St

ri
ng

+
 n

ee
ds

-t
er

m
in

al
 :

 B
oo

le
an

1

ic
on *1

en
tr

y-
po

in
t

*

1

de
sc

ri
pt

io
n

*

1

na
m

e
*

1

su
m

m
ar

y
*

b
in
d
in
g

ca
p
a
b
ili
ti
e
s

1

ca
pa

bi
lit

ie
s

*

Figure B.1: Zero Install feed format

57

context-menu

+ all-objects : Boolean

+ explicit-only : Boolean

default-program

extension

+ mimeType : String
+ perceivedType : Stri…
+ value : String

file-type

1

extension 1..*

games-explorer

icon

+ href : String
+ type : String

1

icon

*

install-commands

+ hideIcons : String
+ hideIconsArgs : Stri…
+ reinstall : String
+ reinstallArgs : String
+ showIcons : String
+ showIconsArgs : Str…

1

install-commands 1

known-prefix

+ value : String

localizable-string

+ lang : String
+ Value : String

1

description

*

registration

+ capability-reg-path : String
+ x64 : Boolean

url-protocol

1

known-prefix *

verb

+ args : String
+ command : String
+ extended : Boolean
+ name : String

1

description

*

*

verb 1

1

verb

1..*

auto-play

+ prog-id : String
+ provider : String
+ verb : verb

1

verb 1

event

+ name : String

1

event 1..*

+ id : String

capabilities

+ arch : String 1

capability

*

comServer

Figure B.2: Capabilities DSL

58 APPENDIX B. XML FORMATS

ca
p
a
b
ili
ti
e
s

ca
p
a
b
ili
ty
-r
e
g
is
tr
a
ti
o
n

+
 c

om
m

an
d

:
St

rin
g

co
n
te
x
t-
m
e
n
u

+
 c

ap
ab

ili
ty

 :
 S

tr
in

g

d
e
fa
u
lt
-p
ro
g
ra
m

d
e
sk
to
p
-i
co
n

fi
le
-t
yp
e

+
 n

am
e

:
St

rin
g

q
u
ic
k
-l
a
u
n
ch

se
n
d
-t
o

u
rl
-p
ro
to
co
l

a
cc
e
ss
-p
o
in
ts

1

en
tr

ie
s

*

a
p
p

+
 a

ut
o-

up
da

te
 :

 B
oo

le
an

+
 in

te
rf

ac
e

:
St

rin
g

+
 n

am
e

:
St

rin
g

+
 t

im
es

ta
m

p
:

In
t6

4
1

ac
ce

ss
Po

in
ts 1

1

ca
pa

bi
lit

ie
s *

a
p
p
-a
lia
s

+
 n

am
e

:
St

rin
g

a
p
p
-l
is
t

1

ap
p *

a
u
to
-p
la
y

m
e
n
u
-e
n
tr
y

+
 c

at
eg

or
y

:
St

rin
g

Figure B.3: Application list and access points DSL

Appendix C

API hooking

This appendix contains sequence diagrams depicting the control flow for calls to
hooked Win32 API methods.

59

60 APPENDIX C. API HOOKING

Target application Hooking DLL Win32 API

RegQueryValueEx (original request)

return error code

RegQueryValueEx (get value type and data length)

return error code

RegQueryValueEx (get data)

return error code

Filter data

Simulate API response

RegQueryValueEx (original request)

return error code

RegQueryValueEx (original request)

return error code

Conditional

[if (value type == string)]

Conditional

[if (data was filtered)]

[else]

[else]

Figure C.1: Calls to the hooked Win32 API method RegQueryValuEx() result
in an additional request to the registry by the hooking DLL. This request is used to
retrieve the actual data and determine whether any filtering is necessary. If the data
is to be filtered a response from the API with the modified content is simulated.
Otherwise, the original request is passed through.

61

Target
application

Hooking DLL Win32 API Child process

CreateProcess (original request)

CreateProcess (suspended)

CreateRemoteThread (inject Hooking DLL)

CreateProcess (original request)

Transfer data

ResumeThread()

Conditional

[if (target is in same directory)]

[else]

Figure C.2: Calls to the hooked Win32 API method CreateProcess() are
modified if the executable file to be loaded is located within the same implemen-
tation directory as the one currently running. The new process is spawned in a
suspended state in order for the hooking library to be installed there as well.

62 APPENDIX C. API HOOKING

Acknowledgments

I would like to thank my thesis supervisor Konrad Miller for helping me refine the
thesis’ thematic priorities and for supporting me during the writing phase.

I am also grateful for Marc Rittinghaus’ help with tracking down bugs in the
implementation.

This thesis would not have been possible without Thomas Leonard’s work on Zero
Install, off which I based my implementation.

I also wish to express my gratitude to Simon E. Silva Lauinger and Roland Leopold
Walking for helping me with the initial Windows port of Zero Install.

Lastly, I offer my regards to all who supported me in any respect during the com-
pletion of this thesis.

63

64 ACKNOWLEDGMENTS

Bibliography

[1] Filesystem Hierarchy Standard 2.3:
http://www.pathname.com/fhs/pub/fhs-2.3.pdf
Published: January 28, 2004

[2] MSDN Library - Dynamic-Link Library Search Order:
http://msdn.microsoft.com/en-us/library/ms682586
Accessed: July 2011

[3] MSDN Library - Side-by-side Assemblies:
http://msdn.microsoft.com/en-us/library/aa376307
Accessed: July 2011

[4] LinuxQuestions.org - Linux Wiki - Library-related Commands and Files:
http://wiki.linuxquestions.org/wiki/
Library-related_Commands_and_Files
Revision from: 08:34, March 25, 2011

[5] PortableApps.com Launcher documentation:
http://portableapps.com/manuals/PortableApps.
comLauncher/intro/overview/
Accessed: July 2011

[6] Zero Install 1.0 release announcement:
http://article.gmane.org/gmane.comp.file-systems.
zero-install.devel/4186
Published: May 23, 2011

[7] Zero Install project website: http://0install.net/
Website of the Windows port: http://0install.de/
Accessed: July 2011

[8] Zero Install Feed file format specification:
http://0install.net/interface-spec.html
Accessed: July 24, 2011; website under version control

65

http://www.pathname.com/fhs/pub/fhs-2.3.pdf
http://msdn.microsoft.com/en-us/library/ms682586
http://msdn.microsoft.com/en-us/library/aa376307
http://wiki.linuxquestions.org/wiki/Library-related_Commands_and_Files
http://wiki.linuxquestions.org/wiki/Library-related_Commands_and_Files
http://portableapps.com/manuals/PortableApps.comLauncher/intro/overview/
http://portableapps.com/manuals/PortableApps.comLauncher/intro/overview/
http://article.gmane.org/gmane.comp.file-systems.zero-install.devel/4186
http://article.gmane.org/gmane.comp.file-systems.zero-install.devel/4186
http://0install.net/
http://0install.de/
http://0install.net/interface-spec.html

66 BIBLIOGRAPHY

[9] Zero Install - Sharing downloads between users:
http://0install.net/sharing.html
Accessed: July 24, 2011; website under version control

[10] The Unix tree rethought: an introduction to GoboLinux
Hisham Muhammad, May 09 2003
http://www.gobolinux.org/?page=k5

[11] Eelco Dolstra and Andres Löh and Nicolas Pierron
NixOS: A Purely Functional Linux Distribution
Cambridge University Press, 2010
http://www.st.ewi.tudelft.nl/~dolstra/pubs/
nixos-jfp-final.pdf

[12] VMware ThinApp User’s Manual (ThinApp 4.0.1):
http://www.vmware.com/pdf/thinapp401_manual.pdf
Accessed: July 2011

[13] W3C - The Open Software Description Format (OSD):
http://www.w3.org/TR/NOTE-OSD
Published: August 11, 1997

[14] Microsoft Application Virtualization 4.6 SP1 Sequencing Guide:
http://download.microsoft.com/download/F/7/8/
F784A197-73BE-48FF-83DA-4102C05A6D44/App-V/App-V%
204.6%20Service%20Pack%201%20Sequencing%20Guide.
docx
Accessed: July 2011

[15] Microsoft Application Virtualization Version 4.6 SP1 Trial Guide:
http://download.microsoft.com/download/F/7/8/
F784A197-73BE-48FF-83DA-4102C05A6D44/App-V/App-V%
204.6%20SP1%20Trial%20Guide.docx
Published: March 10, 2011

[16] InstallFree Bridge Technical Overview Whitepaper:
Available at http://www.installfree.com/ after registration

[17] MSDN Library - File Types:
http://msdn.microsoft.com/en-us/library/cc144148
Accessed: July 2011

[18] MSDN Library - Registering an Application to a URL Protocol:
http://msdn.microsoft.com/en-us/library/aa767914
Accessed: July 2011

http://0install.net/sharing.html
http://www.gobolinux.org/?page=k5
http://www.st.ewi.tudelft.nl/~dolstra/pubs/nixos-jfp-final.pdf
http://www.st.ewi.tudelft.nl/~dolstra/pubs/nixos-jfp-final.pdf
http://www.vmware.com/pdf/thinapp401_manual.pdf
http://www.w3.org/TR/NOTE-OSD
http://download.microsoft.com/download/F/7/8/F784A197-73BE-48FF-83DA-4102C05A6D44/App-V/App-V%204.6%20Service%20Pack%201%20Sequencing%20Guide.docx
http://download.microsoft.com/download/F/7/8/F784A197-73BE-48FF-83DA-4102C05A6D44/App-V/App-V%204.6%20Service%20Pack%201%20Sequencing%20Guide.docx
http://download.microsoft.com/download/F/7/8/F784A197-73BE-48FF-83DA-4102C05A6D44/App-V/App-V%204.6%20Service%20Pack%201%20Sequencing%20Guide.docx
http://download.microsoft.com/download/F/7/8/F784A197-73BE-48FF-83DA-4102C05A6D44/App-V/App-V%204.6%20Service%20Pack%201%20Sequencing%20Guide.docx
http://download.microsoft.com/download/F/7/8/F784A197-73BE-48FF-83DA-4102C05A6D44/App-V/App-V%204.6%20SP1%20Trial%20Guide.docx
http://download.microsoft.com/download/F/7/8/F784A197-73BE-48FF-83DA-4102C05A6D44/App-V/App-V%204.6%20SP1%20Trial%20Guide.docx
http://download.microsoft.com/download/F/7/8/F784A197-73BE-48FF-83DA-4102C05A6D44/App-V/App-V%204.6%20SP1%20Trial%20Guide.docx
http://www.installfree.com/
http://msdn.microsoft.com/en-us/library/cc144148
http://msdn.microsoft.com/en-us/library/aa767914

BIBLIOGRAPHY 67

[19] MSDN Library - Association Arrays:
http://msdn.microsoft.com/en-us/library/ee872122
Accessed: July 2011

[20] MSDN Library - Creating Shortcut Menu Handlers:
http://msdn.microsoft.com/en-us/library/cc144171
Accessed: July 2011

[21] MSDN Library - Customizing a Shortcut Menu Using Dynamic Verbs:
http://msdn.microsoft.com/en-us/library/ee453696
Accessed: July 2011

[22] MSDN Library - Set Program Access and Computer Defaults (SPAD)
http://msdn.microsoft.com/en-us/library/cc144162
Accessed: July 2011

[23] MSDN Library - Registering Programs with Client Types:
http://msdn.microsoft.com/en-us/library/cc144109
Accessed: July 2011

[24] MSDN Library - Default Programs:
http://msdn.microsoft.com/en-us/library/cc144154
Accessed: July 2011

[25] MSDN Library - Preparing Hardware and Software for Use with AutoPlay:
http://msdn.microsoft.com/en-us/library/bb776827
Accessed: July 2011

[26] MSDN Library - The Component Object Model:
http://msdn.microsoft.com/en-us/library/ms694363
Accessed: July 2011

[27] MSDN Library - Getting Started with Games Explorer:
http://msdn.microsoft.com/en-us/library/ee417682
Accessed: July 2011

[28] Windows Sysinternals - Process Monitor
http://technet.microsoft.com/en-us/sysinternals/
bb896645.aspx
Accessed: July 2011

[29] GNOME Library - Preferred Applications
http://library.gnome.org/users/user-guide/stable/
prefs-preferredapps.html.en
Accessed: July 2011

http://msdn.microsoft.com/en-us/library/ee872122
http://msdn.microsoft.com/en-us/library/cc144171
http://msdn.microsoft.com/en-us/library/ee453696
http://msdn.microsoft.com/en-us/library/cc144162
http://msdn.microsoft.com/en-us/library/cc144109
http://msdn.microsoft.com/en-us/library/cc144154
http://msdn.microsoft.com/en-us/library/bb776827
http://msdn.microsoft.com/en-us/library/ms694363
http://msdn.microsoft.com/en-us/library/ee417682
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
http://library.gnome.org/users/user-guide/stable/prefs-preferredapps.html.en
http://library.gnome.org/users/user-guide/stable/prefs-preferredapps.html.en

68 BIBLIOGRAPHY

[30] MSDN Library - FileSystemWatcher Class:
http://msdn.microsoft.com/en-us/library/system.io.
filesystemwatcher
Accessed: July 2011

[31] MSDN Library - RegNotifyChangeKeyValue Function:
http://msdn.microsoft.com/en-us/library/ms724892
Accessed: July 2011

[32] MSDN Library - System.CodeDom.Compiler Namespace:
http://msdn.microsoft.com/en-us/library/system.
codedom.compiler
Accessed: July 2011

[33] MSDN Library - Mutex Objects:
http://msdn.microsoft.com/en-us/library/ms684266
Accessed: July 2011

[34] MSDN Library - Application Registration:
http://msdn.microsoft.com/en-us/library/ee872121
Accessed: July 2011

[35] Intercepting System API Calls
by Seung-Woo Kim
http://software.intel.com/file/29382
Published: May 13, 2004

[36] EasyHook Tutorial:
http://easyhook.codeplex.com/releases/view/24401#
DownloadId=61179
Published: March 8, 2009

[37] MSDN Library - RegQueryValueEx Function:
http://msdn.microsoft.com/en-us/library/ms724911
Accessed: July 2011

[38] MSDN Library - RegSetValueEx Function:
http://msdn.microsoft.com/en-us/library/ms724923
Accessed: July 2011

[39] MSDN Library - CreateProcess Function:
http://msdn.microsoft.com/en-us/library/ms682425
Accessed: July 2011

[40] MSDN Library - How the Integrity Mechanism Is Implemented in Windows
Vista:

http://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher
http://msdn.microsoft.com/en-us/library/system.io.filesystemwatcher
http://msdn.microsoft.com/en-us/library/ms724892
http://msdn.microsoft.com/en-us/library/system.codedom.compiler
http://msdn.microsoft.com/en-us/library/system.codedom.compiler
http://msdn.microsoft.com/en-us/library/ms684266
http://msdn.microsoft.com/en-us/library/ee872121
http://software.intel.com/file/29382
http://easyhook.codeplex.com/releases/view/24401#DownloadId=61179
http://easyhook.codeplex.com/releases/view/24401#DownloadId=61179
http://msdn.microsoft.com/en-us/library/ms724911
http://msdn.microsoft.com/en-us/library/ms724923
http://msdn.microsoft.com/en-us/library/ms682425

BIBLIOGRAPHY 69

http://msdn.microsoft.com/en-us/library/bb625962
Accessed: July 2011

[41] MSDN Library - Taskbar Extensions:
http://msdn.microsoft.com/en-us/library/dd378460
Accessed: July 2011

[42] MSDN Library - System.AppUserModel.RelaunchCommand:
http://msdn.microsoft.com/en-us/library/dd391571
Accessed: July 2011

[43] MSDN Library - CreateWindowEx Function:
http://msdn.microsoft.com/en-us/library/ms632680
Accessed: July 2011

[44] MSDN Library - ICustomDestinationList::AddUserTasks Method:
http://msdn.microsoft.com/en-us/library/dd378395
Accessed: July 2011

[45] PassMark AppTimer product website:
http://www.passmark.com/products/apptimer.htm
Accessed: July 2011

[46] Response time in man-computer conversational transactions
by Robert B. Miller
Published: 1968

[47] freedesktop.org - Desktop Entry Specification 1.1:
http://standards.freedesktop.org/
desktop-entry-spec/desktop-entry-spec-1.1.htm
Accessed: July 2011

[48] freedesktop.org - Shared MIME-info Database 0.18:
http://standards.freedesktop.org/
shared-mime-info-spec/shared-mime-info-spec-0.
18.html
Accessed: July 2011

[49] Mac OS X Developer Library - Bundle Programming Guide:
http://developer.apple.com/library/mac/
documentation/CoreFoundation/Conceptual/CFBundles/
Accessed: July 2011

http://msdn.microsoft.com/en-us/library/bb625962
http://msdn.microsoft.com/en-us/library/dd378460
http://msdn.microsoft.com/en-us/library/dd391571
http://msdn.microsoft.com/en-us/library/ms632680
http://msdn.microsoft.com/en-us/library/dd378395
http://www.passmark.com/products/apptimer.htm
http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-1.1.htm
http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-1.1.htm
http://standards.freedesktop.org/shared-mime-info-spec/shared-mime-info-spec-0.18.html
http://standards.freedesktop.org/shared-mime-info-spec/shared-mime-info-spec-0.18.html
http://standards.freedesktop.org/shared-mime-info-spec/shared-mime-info-spec-0.18.html
http://developer.apple.com/library/mac/documentation/CoreFoundation/Conceptual/CFBundles/
http://developer.apple.com/library/mac/documentation/CoreFoundation/Conceptual/CFBundles/

	Abstract
	Deutsche Zusammenfassung
	Contents
	Introduction
	Problem definition
	Objectives
	Methodology
	Contribution

	Background
	Common terms
	Zero Install
	Related work

	Analysis
	Platform documentation
	Installation monitoring
	Definitions
	Capturing

	Design
	Goals
	Domain-specific languages
	Capturing
	Applying desktop integration
	Synchronization

	Implementation
	Tools and libraries
	Installation capturing
	Applying desktop integration
	Stubs
	API hooking

	Evaluation
	Methodology
	Use cases
	Benchmarks
	Results
	Discussion

	Conclusion
	Future work

	Screenshots
	XML formats
	API hooking
	Acknowledgments
	Bibliography

